- idempotent function
- идемпотентная функция
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
Constant function — Not to be confused with Function constant. In mathematics, a constant function is a function whose values do not vary and thus are constant. For example the function f(x) = 4 is constant since f maps any value to 4. More formally, a function… … Wikipedia
Idempotence — IPAEng|ˌaɪdɨmˈpoʊtəns describes the property of operations in mathematics and computer science which means that multiple applications of the operation does not change the result. The concept of idempotence arises in a number of places in abstract … Wikipedia
Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… … Wikipedia
List of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… … Wikipedia
Inverse semigroup — In mathematics, an inverse semigroup S is a semigroup in which every element x in S has a unique inverse y in S in the sense that x = xyx and y = yxy. Inverse semigroups appear in a range of contexts; for example, they can be employed in the… … Wikipedia
Semigroup — This article is about the algebraic structure. For applications to differential equations, see C0 semigroup. In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup… … Wikipedia
Closure operator — In mathematics, a closure operator on a set S is a function cl: P(S) → P(S) from the power set of S to itself which satisfies the following conditions for all sets X,Y ⊆ S. X ⊆ cl(X) (cl is extensive) X ⊆ Y implies cl(X) ⊆ cl(Y) (cl… … Wikipedia
Algebraic structure — In algebra, a branch of pure mathematics, an algebraic structure consists of one or more sets closed under one or more operations, satisfying some axioms. Abstract algebra is primarily the study of algebraic structures and their properties. The… … Wikipedia
Monoid — This article is about the mathematical concept. For the alien creatures in the Doctor Who adventure, see The Ark (Doctor Who). Coherence law for monoid unit In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a… … Wikipedia
Inverse element — In abstract algebra, the idea of an inverse element generalises the concept of a negation, in relation to addition, and a reciprocal, in relation to multiplication. The intuition is of an element that can undo the effect of combination with… … Wikipedia
Mathematical analysis — Mathematical analysis, which mathematicians refer to simply as analysis, has its beginnings in the rigorous formulation of infinitesimal calculus. It is a branch of pure mathematics that includes the theories of differentiation, integration and… … Wikipedia